Tel.: 03303 / 50 40 66

Fax.: 03303 / 50 40 68

Betriebsanleitung Sensor für **Umgebungs**bedingungen **IPTF 500**

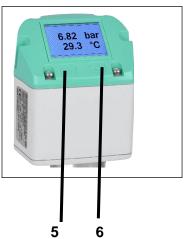
I. Vorwort

Lesen Sie vor Installations-, Inbetriebnahme- und Wartungsarbeiten diese Betriebsanleitung aufmerksam und vollständig durch. Folgen Sie den Anweisungen, um einen gefahrlosen Betrieb und die einwandfreie Funktion sicherzustellen. Die Betriebsanleitung muss ständig am Einsatzort verfügbar sein. Es ist unzulässig nur Einzelseiten zur Verfügung zu stellen.

II. Inhaltsverzeichnis

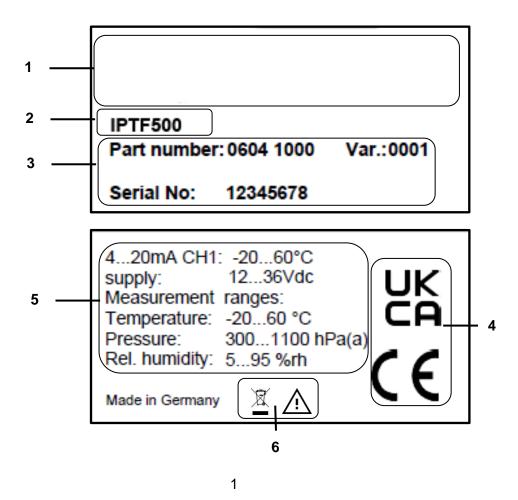
I Vorw	ort	2
II Inhalt	sverzeichnis	3
1 Liefe	rumfang	5
2 Gerät	eübersicht	5
3 Typei	nschilder	6
4 Besti	mmungsgemäße Verwendung	7
5 Besti	mmungswidriger Einsatz	7
6 Siche	rheitsbestimmungen	7
6.1	In dieser Anleitung verwendete Warn- und Hinweissymbole	7
6.2	Warnhinweise	8
6.3	Allgemeine Sicherheitshinweise	8
6.4	Ersatzteile/Zubehör	11
6.5	Umweltschutz	11
7 Produ	uktinformationen	11
7.1	Produktmerkmale	11
7.2	Funktion	11
8 Techi	nische Daten	12
8.1	Technische Daten und Umgebungsbedingungen	12
8.2	Abmessungen IPTF 500	13
9 Wand	Imontage IPTF 500	13
9.1	Bedieneinheit um 180° drehen	14
10 Elekt	rischer Anschluss	15
10.1	1 Service Schnittstelle (Modbus RT, Analogausgang 420 mA	15
10.2	2 Ethernet/ Ethernet PoE (Power over Ethernet)	17
11 Inbet	riebnahme	18
11.1	1 Sensor einschalten	18
11 3	2 Hauntmenü nach dem Einschalten	18

12 . Bedienung 19							
13. Menü Einstellungen19							
13.1 Einstellungsmenü aufrufen20							
14 Sensor-Einstellungen2							
14.1 Einheiten	. 21						
14.2 Einstellung Offset Druck	. 22						
14.3 Einstellung Offset Temperatur	. 23						
14.4 Einstellung Offset rel. Feuchte	. 24						
15 Einstellungen erweitert	. 25						
15.1 Service Schnittstelle (Modbus RTU)	. 25						
15.2 Schalt-/Alarmausgang	. 26						
15.3 Benutzer							
15.3.1 Passwort Einstellungsmenü, 4-stellig	. 27						
15.3.2 Sprache	. 27						
15.3.3 Display-Helligkeit / -Display Ausrichtung	. 28						
15.4 Einstellung Analogausgang 4…20 mA	. 29						
15.4.1 Kanal 1	. 29						
15.4.2 Status	. 29						
15.4.3 Einheit	. 29						
15.4.4 Skalierung 4 mA und 20 mA	. 30						
15.4.5 Fehler Strom	. 30						
16 Ethernet-Einstellungen	. 31						
16.1 IP Adresse	. 31						
16.2 Modbus-TCP-Setup	. 31						
17 Info	. 32						
18 Status- und Fehlermeldungen	. 33						
18.1 Fehlermeldungen	. 33						
19 Wartung	. 34						
19.1 Austausch der Sensoreinheit	. 34						
19.2 Wartung	. 34						
19.3 Kalibrierung	. 34						
19.4 Ersatzteile und Reparatur	. 34						
20 Demontage	. 34						
21 ANHANG	. 35						
21.1 Modbus RTU-Settings (20012005)	. 35						
21.2 Values Register IPTF 500	35						
21.1 Values Register Actual, Min & Max IPTF 500	36						
21.2 Index Einheiten	. 37						
Konformitätserklärung	38						


1 Lieferumfang

- Umgebungsbedingungssensor IPTF 500
- Halterung
- Kalibrierzertifikat
- Diese Betriebsanleitung

2 Geräteübersicht



- 1 Steuerung / Bedieneinheit
- 1.1 Deckel mit Display (180° drehbar)
- 2 Anschluss A (Spannungs-Versorgung, Modbus RTU, 4...20 mA)
- 3 Anschluss B (Impuls, MBus, Ethernet)
- 4 Sensoreinheit
- 5 Auswahl-Taste (UP)
- 6 ENTER-/OK-Taste
- 7 Halterung

3 Typenschilder

- 1 Herstellerinfo
- 2 Sensorname
- 3 Bestellnummern, Seriennummer, Produktionsdatum
- 4 Konformitäts-/ Zertifizierungskennzeichnung
- 5 Elektrische Anschlussdaten:
 - z.B. verfügbare Ein- und Ausgänge, Versorgungsspannung
- 6 Warnhinweis "Bedienungsanleitung ist zu beachten"

4 Bestimmungsgemäße Verwendung

Der Umgebungsbedingungssensor IPTF 500 ist eine Messsonde, mit der die Umgebungsluft (z. B. Ansaugluft für einen Kompressor) analysiert wird. Hierbei wird der Absolutdruck, die Raumtemperatur und die Luftfeuchte im Raum ermittelt.

Zulässig ist ein Betrieb des IPTF 500 nur in folgenden Fällen:

- Sensor nur im Innenbereich verwenden
 Schutz des Sensors vor direkter Sonneneinstrahlung, Regen, Spritzwasser oder übermäßiger Staubentwicklung muss gegeben sein.
- In Raumluft mit sauber und ölfreier Beschaffenheit.
- Gemäß den technischen Daten und zugelassenen Umgebungsbedingungen.
- Bei korrekter Kalibrierung → Kapitel 22.3.

5 Bestimmungswidriger Einsatz

Missbrauch bei Einsatz als Steighilfe! Umgebungsbedingungssensor kann beschädigt werden. Gefahr des Abrutschens. Den Installationsort so wählen, dass der Umgebungsbedingungssensor nicht als Steighilfe genutzt werden kann. Den Umgebungsbedingungssensor niemals als Trittstufe oder Steighilfe benutzen.

Falsche Messergebnisse bei nicht zulässigen Einsatzbedingungen.

Den Umgebungsbedingungssensor nicht in der Nähe von Wärmequellen (Heizkörper, Kühlschrank, etc.) installieren. Eine ausreichende Luftzirkulation sicherstellen. Einen Abstand zur Zimmerecke von mindestens 0,5 m einhalten. Verschmutze Luft (Öl, Chemikalien etc.) kann die Sensoreinheit beschädigen und eine Reparatur beim Hersteller verursachen.

6 Sicherheitsbestimmungen

6.1 In dieser Anleitung verwendete Warn- und Hinweissymbole

Dieses Symbol befindet sich bei allen Arbeitssicherheitshinweisen in dieser Betriebsanleitung, bei denen Gefahr für Leib und Leben von Personen besteht. Beachtung dieser Hinweise und vorsichtiges Verhalten sind in diesen Fällen besonders wichtig. Alle Arbeitssicherheitshinweise müssen auch an andere Benutzer weitergegeben werden. Neben den Hinweisen in dieser Betriebsanleitung müssen die allgemeinen Sicherheits- und Unfallverhütungsvorschriften berücksichtigt werden.

Dieses Symbol steht an den Stellen der Betriebsanleitung, die besonders zu beachten sind, damit die Richtlinien, Vorschriften, Hinweise und der richtige Ablauf der Arbeiten eingehalten sowie eine Beschädigung und Zerstörung verhindert wird.

Dieses Symbol kennzeichnet wichtige Informationen oder Maßnahmen zum Umweltschutz.

Dieses Symbol kennzeichnet besonders wichtige Informationen für die Betreiber.

6.2 Warnhinweise

Warnhinweise sind nach den Gefährdungsstufen **GEFAHR**, **WARNUNG** und **VORSICHT** untergliedert. Bedeutung der Warnhinweise:

GEFAHR Unmittelbare Gefahr!

Bei Nichtbeachtung drohen schwerste Verletzungen oder Tod.

WARNUNG

Möglicherweise gefährliche Situation!

Bei Nichtbeachtung drohen schwerste Verletzungen oder Tod.

VORSICHT

Möglicherweise gefährliche Situation!

Bei Nichtbeachtung drohen mittlere bis leichte Verletzungen.

HINWEIS

Möglicherweise gefährliche Situation!

Bei Nichtbeachtung drohen Sachschäden.

6.3 Allgemeine Sicherheitshinweise

Wichtige Hinweise für das Installations- und Wartungspersonal

Der Einbau des Umgebungsbedingungssensors ist nur durch ausgebildete Fachkräfte mit Kenntnissen und Erfahrungen in der Druckluft- und Elektrotechnik zulässig.

Der elektrische Anschluss, die Inbetriebnahme und Wartung ist nur durch Elektrofachkräfte entsprechend den elektrotechnischen Regeln (DIN EN 50110-1, DIN EN 60204-1 etc.) zulässig. Voraussetzung für das Fachpersonal: Fachliche Ausbildung und Kenntnis der Fachnormen, EU-Richtlinien und EU-Verordnungen.

Die geltendenen nationalen Unfallverhütungsvorschriften und Verordnungen sowie Maßnahmen des allgemeinen Arbeitsschutzes und der Arbeitssicherheit sind zu beachten, z. B. geeignete und vorgeschriebene persönliche Schutzausrüstung (PSA) tragen.

Reparaturen und Justagen sind nur durch den Hersteller zulässig. Installation und Wartung durch unterwiesenes Fachpersonal.

Pflichten des Errichters und Anlagenbetreibers

Der Umgebungsbedingungssensor ist regelmäßig von einer unterwiesenen und qualifizierten Person zu überprüfen und zu warten → Kapitel 22.

Reinigungs- und Instandhaltungsintervalle sind gemäß DIN-ISO-Zertifizierung vom Anlagenbetreiber zu bestimmen – Häufigkeit abhängig von Umgebungsbedingungen und erwarteten Beeinträchtigungen.

Kalibrierung: Eine (Re)-Kalibrierung ist abhängig von betrieblichen Vorgaben und etwaiger bestimmungsgemäßer DIN ISO Zertifizierungen vorzunehmen.

Empfohlen wird üblicherweise eine regelmäßige Kalibrierung nach 2 Jahren bzw. in zeitlichen Abständen, festgelegt durch den Betreiber.

Umgebungsbedingungssensor zur Kalibrierung ausbauen und an uns senden → Kapitel 22. Für den Einsatz in betriebswichtigen Anlagen einen baugleichen Ersatzsensor bereithalten.

HINWEIS

Ohne Rücksprache und Genehmigung entfällt bei Umbauarbeiten, welche nicht in dieser Betriebsanleitung aufgeführt sind, der Gewährleistungsanspruch. Dieses Symbol steht an den Stellen der Betriebsanleitung, die besonders zu beachten sind, damit die Richtlinien, Vorschriften, Hinweise und der richtige Ablauf der Arbeiten eingehalten sowie eine Beschädigung und Zerstörung verhindert wird.

Pflichten des System-Errichters: Der System-Errichter ist verantwortlich für die Sicherheit des Systems, in das der IPTF 500 eingebaut wird. Beachten Sie hierzu insbesondere die technischen Daten und Umgebungsbedingungen (Kapitel 8) sowie die Angaben zum elektrischen Anschluss und vorgeschriebene Anschlussleitungen (Kapitel 10).

Verwenden Sie den IPTF 500 nur bestimmungsgemäß.

Verletzungs- und Unfallgefahr bei Betrieb außerhalb der zulässigen Umgebungs-/Betriebsbedingungen oder Einsatztemperaturen durch Überdruck oder fehlerhafte Installation. Maximal zulässigen Betriebsdruck einhalten. Stellen Sie sicher, dass der Umgebungsbedingungssensor nur innerhalb der zulässigen Grenzwerte (→ Typenschild) betrieben wird.

Verletzungsgefahr durch unzulässige Gerätemodifikationen, inkorrekte Montage oder durch beschädigte Bauteile. Die Betriebserlaubnis erlischt in diesen Fällen. Ein Betrieb ist nur mit Original-Komponenten zulässig.
Umgebungsbedingungssensor nur komplett montiert betreiben. Einen beschädigten Sensor nicht in Betrieb nehmen und eine weitere Benutzung bis zur Instandsetzung verhindern. Der Sensor ist regelmäßig von unterwiesenen und qualifizierten Personen zu überprüfen und zu warten. Gerätemodifikationen sind unzulässig und entbinden den Hersteller von jeglicher Gewährleistung und Haftung.

Messfehler durch Schmutzpartikel in der Raumluft. Schmutzpartikel und Flüssigkeiten können das Sensorelement verschmutzen und zu einer Fehlfunktion oder Störung führen. Der Anlagenbetreiber hat für die vorgeschriebene Reinheit der für die Anwendung zugelassen Luft sowie für entsprechende Reinigungs- und Wartungsintervalle zu sorgen. Der Hersteller übernimmt keinerlei Gewährleistung und Haftung hinsichtlich einer Fehlanwendung.

Explosionsgefahr in Ex-geschützten Bereichen durch Entzünden von Explosivstoffen bei Funkenbildung. Der Umgebungsbedingungssensor besitzt keine Ex-Zulassung! Umgebungsbedingungssensor nicht in Ex-geschützten Bereichen einsetzen.

Saubere Raumluft ohne schädliche Bestandteile sicherstellen. Schädliche Bestandteile sind z. B. explosionsfähige oder chemisch instabile Gase und Dämpfe, Säure oder Base bildende Stoffe wie Ammoniak, Chlor oder Schwefelwasserstoffe sowie Kondensate oder Öle bzw. Öldämpfe.

Passwortschutz im Einstellungsmenü: Zum Schutz vor unberechtigten Eingaben/Einstellungen der Systemparameter ist ein Passwortschutz vorhanden. Für Einstellung des Passworts → Kapitel 17.1.

Gefahren bei Nichtbeachtung der geltenden Vorschriften für Elektroinstallationen. Bei der Elektroinstallation die geltenden Vorschriften beachten, z. B. DIN EN 50110-1, in Deutschland insbesondere VDE 0100 mit den entsprechenden Teilen, örtliche Bestimmungen beachten. Vor Arbeiten an der Elektroinstallation alle Versorgungsstromkreise abschalten, Netzsicherung ausschalten und gegen Wiedereinschalten sichern. Spannungsfreiheit sicherstellen. Umgebungsbedingungssensor nur mit zulässigen Anschlussleitungen für die Netzversorgung und Busanbindung betreiben → technische Daten. Elektrischen Anschluss gemäß Verdrahtungsplan (→ Kap. 10) vornehmen.

Vorsicht beim Umgang mit Verpackungsmaterialien. Geltende Sicherheits- und Unfallverhütungsvorschriften einhalten. Verpackungsmaterial außer Reichweite von Kindern aufbewahren (Erstickungsgefahr durch Folienmaterialien oder bei Verschlucken von Kleinteilen).

6.4 Ersatzteile/Zubehör

Ersatzteile

- Deckel mit Display
- Sensoreinheit
- Halterung

HINWEIS

Zulässig ist ein Austausch des Deckels und des Displays der Bedieneinheit nur durch unterwiesenes Fachpersonal. Alle anderen Reparaturen sind nur durch den Hersteller zulässig, um die Messgenauigkeit und Betriebssicherheit zu gewährleisten.

HINWEIS

Für den Einsatz in betriebswichtigen Anlagen halten Sie einen baugleichen Ersatzsensor bereit.

6.5 Umweltschutz

Der Umgebungsbedingungssensor und auch die Verpackung enthalten wiederverwertbare Stoffe, die nicht in den Restmüll gelangen dürfen. Verpackungsmaterialien und Umgebungsbedingungssensor nach Ende der Nutzung umweltgerecht nach den in Ihrem Land geltenden Bestimmungen entsorgen.

DE: Entsorgungsschlüssel gemäß Abfallverzeichnis-Verordnung (AVV) **16 02 14**, elektrische und elektronische Geräte und deren Bauteile.

7 Produktinformationen

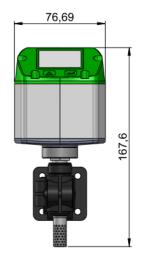
7.1 Produktmerkmale

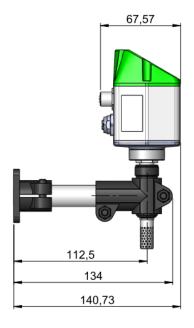
- Einheiten frei wählbar: °C, °F, hPa, mbar, bar, psi, % r.F.
- 2 Tasten Eingabe am Display
- 1x Analogausgang 4 ... 20 mA, einstellbar für die Messgrößen atmosphärischer Druck, Temperatur und rel. Feuchte

Optional: 2x Analogausgänge 4..20mA

- Modbus RTU-Schnittstelle (RS-485)
- Optional; Ethernet / Ethernet PoE and M-Bus
- Schalt-/Alarmausgang, galvanisch getrennt. Alarm über Tastatur einstellbar.
- IP 65-Gehäuse

7.2 Funktion


Der Umgebungsbedingungssensor IPTF 500 analysiert die Umgebungsluft (Ansaugluft für einen Kompressor) und ermittelt den Absolutdruck, die Raumtemperatur und Luftfeuchte im Raum.


8 Technische Daten

8.1 Technische Daten und Umgebungsbedingungen

Messgrößen	Absolutdruck, Raumtemperatur, Luftfeuchte im Raum
Messbereich Temperatur	-20+60 °C / -4140 °F
Genauigkeit Temperatur	±1,0 K (060 °C), ±1,25 K (-200 °C) ±1,0 K (32140 °F), ±1,25 K (-432 °F)
Messbereich rel. Feuchte	595 % r. F.
Genauigkeit rel. Feuchte	±3 %
Messbereich Absolutdruck	3001100 hPa (a)
Genauigkeit Absolutdruck	±1,7 hPa bei 20°C
Einsatztemperatur	-20+60 °C / -4+140 °F
Umgebungstemperatur	-20+60 °C / -4+140 °F
Lagertemperatur	-40+80 °C / -40+176 °F
Verschmutzungsgrad	Verschmutzungsgrad 2
Betriebshöhe, Lagerhöhe	02000m (06560 ft)
Relative Luftfeuchte (Transport, Lagerung,	0% bis 90% (nicht kondensierend)
Betrieb)	
Spannungsversorgung	18 bis 36 VDC über SELV-Versorgung, 5 W bzw. Power over Ethernet gemäß IEEE 802.3af, Klasse 2 (3,84 6,49 W). Absicherung in Versorgungseinheit T2.5L 125V
Leistungsaufnahme	Max. 6.5W
Signalausgang	Modbus-RTU (RS-485)
	1x AO 420 mA (Druck, Temperatur oder rel. Feuchte)
	Optional: Modbus-TCP Ethernet / Ethernet PoE M-Bus
	2x Analogausgang 4.20mA
Leistungsaufnahme Massworte per Medhus TCP	Max. 6.5W
Messwerte per Modbus-TCP	Druck (hPa, mbar, bar, psi) Temperatur (°C, °F) Rel. Luftfeuchte (% r.F.)
Elektrischer Anschluss	2 x M12-Einbaustecker, 5-polig (A-codiert) Option Ethernet: 1 x M12-Buchse, 8-polig (X-codiert)
Schutzklasse	IP 65

8.2 Abmessungen IPTF 500

9 Wandmontage IPTF 500

HINWEISE

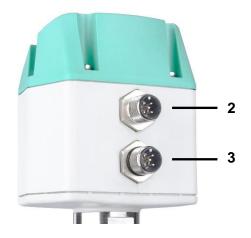
- Zulässiger Abstand Sensormitte Umgebungsbedingungssensor zur Wand = mindestens 110 mm. Ein zu geringer Abstand kann zu fehlerhaften Messergebnissen führen.
- Darauf achten, dass die Sensoreinheit frei liegt und nicht durch Umgebungseinflüsse (Wärmequellen) beeinträchtigt wird. Auf ausreichende Luftzirkulation achten.
- ► Kondensat und Partikel in der Umgebungsluft können das Sensorelement verschmutzen und führen zu fehlerhaften Messergebnissen.
- Falls erforderlich, den Displaykopf der Bedieneinheit um 180° drehen (→ Kapitel 9.1) bzw. die Displayanzeige drehen (bei Leserichtung kopfstehend LCD drehen → Kapitel 17.3).
- Umgebungsbedingungssensor mit einem Mindestabstand von 110 mm zur Wand befestigen. Eine Halterung kann bauseitig installiert werden. Falls gewünscht, die Halterung → Abbildung installieren.
- 2. Zur Montage des Sensors ist eine erschütterungsfreie, feste und tragfähige Wand erforderlich.

9.1 Bedieneinheit um 180° drehen

Falls gewünscht, die Bedieneinheit um 180° drehen.

- 1. Die 6 Befestigungsschrauben [S] lösen (Torx 10).
- 2. Bedieneinheit nach oben herausnehmen und um 180° drehen.

HINWEIS


Funktionsstörungen/Gerätebeschädigung bei fehlerhaftem Einbau. Auf Lage der Kopfdichtung achten. Sicherstellen, dass die Anschlussleitungen korrekt in den Einbausteckern [2] und [3] eingesteckt werden können.

3. Bedieneinheit mit den 6 Befestigungsschrauben [S] festschrauben, Anzugsdrehmoment 5 Nm.

10 Elektrischer Anschluss

Arbeiten an der Elektrik dürfen nur von Elektrofachkräften oder befähigten Personen vorgenommen werden. Bei Elektroinstallationen die geltenden Vorschriften beachten, z. B. DIN EN 50110-1, in Deutschland insbesondere VDE 0100 mit den entsprechenden Teilen bzw. weitere nationale Vorschriften entsprechend beachten.

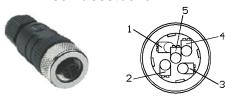
10.1 Service Schnittstelle (Modbus RT, Analogausgang 4...20 mA

- 2 Anschlussstecker: Modbus RTU, Spannungs-/Stromversorgung, 4...20 mA Ausgang: M12-Einbaustecker, 5-polig, A-codiert
- 3 Anschlussstecker: Impulsausgang oder M-Bus-Interface M12-Einbaustecker, 5-polig, A-codiert

Vorkonfektionierte Anschlusskabel als Zubehör erhältlich.

HINWEIS

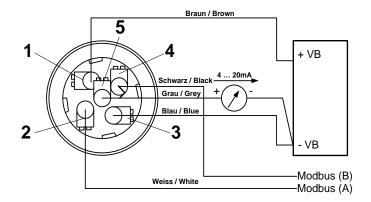
Nicht benötigte Anschlüsse (NC) **nicht** auf Potenzial und/oder Erde legen. Nicht benötigte Leitungen abschneiden und fachgerecht isolieren.


	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5
Anschluss A	+VB	RS 485 (A) RS 485 (+)	-VB	RS 485 (B) RS 485 (-)	l+ (420 mA)
Anschluss B Impulsausgang (Standard)	NC	GND	DIR	Impuls galv. isoliert	Impuls galv. isoliert
Anschlusstecker B Option MBus	NC	GND	DIR	MBus	MBus
Leitungsfarben 0553.0106 (5 m) 0553.0107 (10 m)	braun	weiss	blau	schwarz	grau

-VB Negative Versorgungsspannung 0 V

+VB Positive Versorgungsspannung 18...36 VDC geglättet
I + Stromsignal 4...20 mA – ausgewähltes Messsignal
Schaltausgang (normally closed), max. 48 V, 0,05 A

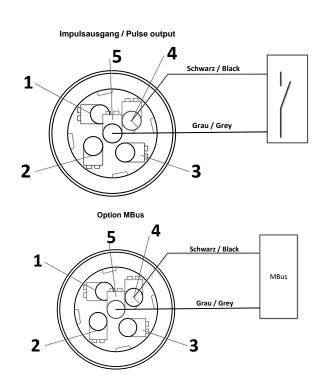
RS-485 (A) Modbus RTU A / Modbus RTU (+) RS-485 (B) Modbus RTU B / Modbus RTU (-)


M12 Anschlussstecker

Ansicht Rückseite= (Klemmenseite)

Wurde keine Anschlussleitung/Impulsleitung bestellt, wird der Sensor mit M12-Einbaustecker, 5-polig, A-codiert geliefert. Der Anwender kann die Signale verbinden, wie im Anschlussdiagramm dargestellt.

Anschlussstecker A [2]: M12-Einbaustecker, A-codiert



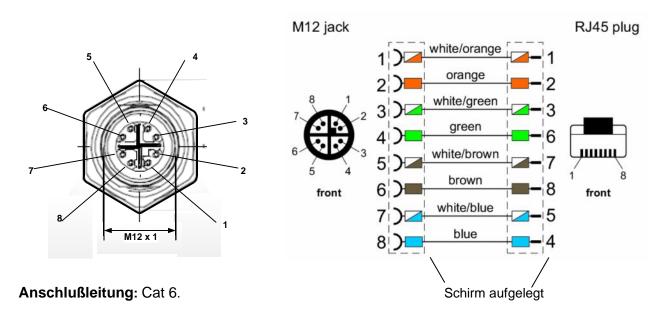
HINWEIS

Für Modbus-RTU Setup → Kapitel 15 und Tabellen im Anhang.

Anschlussstecker B [3]: M12-Einbaustecker, A-codiert

10.2 Ethernet/ Ethernet PoE (Power over Ethernet)

3 Anschlussstecker Ethernet / Ethernet PoE: M12-Ethernet-Einbaustecker, X-codiert



HINWEIS

Anschlussstecker Ethernet (PoE): M12 X-codiert 8-polig (Buchse)

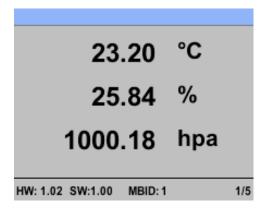
Anschlussleitung M12 X-codiert (Stecker) auf RJ45, Datenleitungen: 1,2 und 3,4 und PoE Leitungen 5,6 und 7,8

Anschluss B [3] M12 X-codiert 8 polig Anschlußleitung
M12 X-codiert auf RJ45

Hinweis:

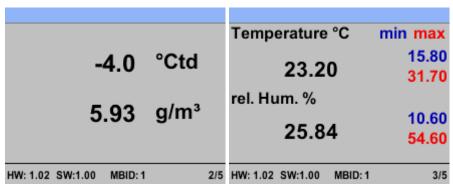
PTS 500 Power Klassifikation nach IEEE 802.3af: Klasse 2 (3,84W - 6,49W)

*PoE: Power over Ethernet


11 Inbetriebnahme

11.1 Sensor einschalten

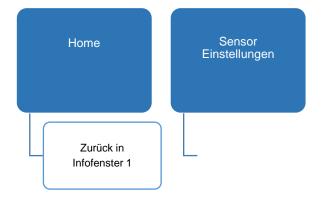
- 1. Sicherstellen, dass der IPTF 500 korrekt angeschlossen ist.
- 2. Nach Anlegen der Spannungsversorgung (erstmaliger Start bzw. nach einem Reset) schaltet der Umgebungsbedingungssensor ein und führt für ca. 2...3 Sekunden eine Geräteinitialisierung durch.


11.2 Hauptmenü nach dem Einschalten

Startbildschirm: Info-Seite 1

Um zwischen den Info-Seiten umzuschalten die Taste drücken.

Info-Seite 2 Info-Seite 3


Info-Seite 4 Info-Seite 5

Pressure hpa	min max	abs. Hum. g/m ³	min max
1000.18	960.00 1013.25	5.93	2.43 18.10
Dewpoint °Ctd			
-4.0	-7.1 21.4		
HW: 1.02 SW:1.00 MBID: 1	4/5	HW: 1.02 SW:1.00 M	BID: 1 5/5

12 Bedienung

- Die Anwahl eines Menüpunktes, Tastenfeldes oder Eingabewertes erfolgt mit Taste .
- Um in das gewählte Menü/Tastenfeld zu gelangen oder den Eingabewert zu bestätigen die Taste drücken, je nachdem in welchem Menü/Tastenfeld Sie sich befinden.
- Mit **zurück** gelangen Sie in das darüberliegende Menü.

13 Menü Einstellungen

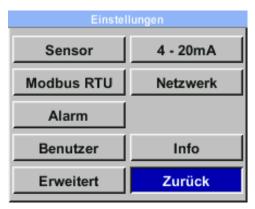
13.1 Einstellungsmenü aufrufen

HINWEIS

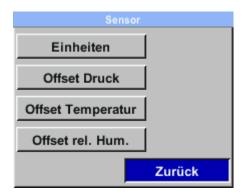
Passwort ab Werk = 0000. Falls das Passwort einmal geändert und vergessen wurde, erhalten Sie Zugriff mit einem Master-Passwort.

HINWEIS

Um ein neues Passwort zu vergeben,


Einstellungen → Passwort > Benutzer > Passwort anwählen.

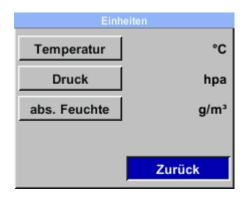
1. Taste drücken.


Es erscheint das Passwort-Eingabefeld.

- 2. Das 4-stellige Passwort eingeben.
- 3. Mit bestätigen.

Es erscheint das Menü Einstellungen

14 Sensor-Einstellungen



1. Im Menü Einstellungen mit das Menü **Sensor** anwählen und mit bestätigen.

Auswahlfelder: Einheiten, Offset Druck, Offset Temperatur und Offset rel. Feuchte.

2. Mit **zurück** → Hauptmenü.

14.1 Einheiten

Hier lassen sich die Einheiten für die Temperatur (°C, °F), den Druck (hPa, mbar, bar, psi, Mpa) und der berechneten abs. Feuchte in mg/m³, g/m³ festlegen.

1. Anwahl mit Auswahlfeld . Bestätigen mit .

Im Anzeigefeld erscheint die aktuell eingestellte Einheit.

2. Anwahl einer anderen Einheit mit . Bestätigen mit 2x .

3. Mit **zurück** → Hauptmenü.

14.2 Einstellung Offset Druck

HINWEIS

Offset: Der Offsetwert dient dazu, geringfügige Abweichungen zwischen dem Signalwert und Messbereichswert auszugleichen, die nach längerem Betrieb auftreten können.

Empfehlung: Von Zeit zu Zeit eine Nachkalibrierung durchführen, um eine hohe Genauigkeit zu gewährleisten.

HINWEIS

Der Offsetwert lässt sich mit einer Referenzüberprüfung oder mit einem 2. Umgebungsbedingungssensor ermitteln.

- 1. Zum Ändern des Offsetdrucks mit das entsprechende Eingabefeld anwählen und mit bestätigen.
- 2. Anwahl **Setze Wert auf** mit . Bestätigen mit 2x .
- 3. Zur Eingabe ein Ziffernfeld mit anwählen und mit bestätigen.
- 4. Erhöhen des Zahlenwertes mit . Bestätigen der Eingabe mit .
- 5. Mit CLR wird die Anzeige auf 0 zurückgesetzt.
- 6. Mit **ok** → Übernahme des neuen Wertes.
- 7. Mit **zurück** → Speichern und zurück zum Hauptmenü.

14.3 Einstellung Offset Temperatur

HINWEIS

Offset: Der Offsetwert dient dazu, geringfügige Abweichungen zwischen dem Signalwert und Messbereichswert auszugleichen, die nach längerem Betrieb auftreten können.

Empfehlung: Von Zeit zu Zeit eine Nachkalibrierung durchführen, um eine hohe Genauigkeit zu gewährleisten.

HINWEIS

Die Offsettemperatur lässt sich mit einem 2. Thermometer ermitteln.

- 1. Zum Setzen der **Offset Temperatur** mit das Eingabefeld **Setze Wert auf** anwählen und mit bestätigen.
- 2. Zur Eingabe ein Ziffernfeld mit anwählen und mit ebestätigen.
- 3. Erhöhen des Zahlenwertes mit . Bestätigen der Eingabe mit .
- 4. Mit **Kalibrierung** den eingebenden Referenz Wert übernehmen, z. B. Vergleichswert zu einem frisch kalibrierten Umgebungsbedingungssensor oder Servicesensor.
- Mit Reset zurücksetzen auf Werkseinstellung.
- 6. Mit **zurück** → Speichern und zurück zum Hauptmenü.

14.4 Einstellung Offset rel. Feuchte

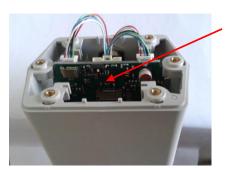
HINWEIS

Offset: Der Offsetwert dient dazu, geringfügige Abweichungen zwischen dem Signalwert und Messbereichswert auszugleichen, die nach längerem Betrieb auftreten können.

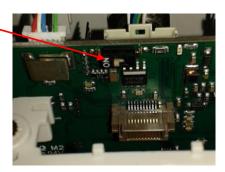
Empfehlung: Von Zeit zu Zeit eine Nachkalibrierung durchführen, um eine hohe Genauigkeit zu gewährleisten.

HINWEIS

Die Offsettemperatur lässt sich mit einem 2. Thermometer ermitteln.


- 1. Zum Setzen des **Offset rel. Feuchte** mit das Eingabefeld **Setze Wert auf** anwählen und mit bestätigen.
- 2. Zur Eingabe ein Ziffernfeld mit anwählen und mit bestätigen.
- 3. Erhöhen des Zahlenwertes mit . Bestätigen der Eingabe mit .
- Mit Kalibrierung den eingebenden Referenz Wert übernehmen, z. B. Vergleichswert zu einem frisch kalibrierten Umgebungsbedingungssensor oder Servicesensor.
- Mit Reset zurücksetzen auf Werkseinstellung.
- 6. Mit **zurück** → Speichern und zurück zum Hauptmenü.

15 Einstellungen erweitert


15.1 Service Schnittstelle (Modbus RTU)

Der Umgebungsbedingungssensor ist mit einer RS-485-Schnittstelle (Modbus-RTU) ausgestattet, die ab Werk deaktiviert ist. **Den Sensor erst nach Abschluss folgender Einstell-arbeiten am Modbus anschließen:**

 Falls der Drucksensor am Ende der Modbusleitung installiert wird, ist eine Abschlussterminierung vorzunehmen (falls nicht → Punkt 2.). Dazu den internen Schalter auf ON setzen. Alternativ kann auch ein 120R Widerstand im Stecker zwischen Pin 2 und Pin 4 verbaut werden → Kapitel 10, Elektrischer Anschluss. Zum Öffnen der Bedieneinheit → Kapitel 9.2.

Modbus-Parameterwerte prüfen und ggf. anpassen

Einstellung → Modbus RTU.

Sc	hnittstellen-Parameter	Werkseinstellung				
•	Modbus ID/Sensor ID	1				
•	Baudrate	19200				
•	Stoppbit	1				
•	Parität	even				
•	Byte-Format	ABCD				

ID, Baudrate, Stoppbit, Parität und Byte Format einstellen

- 2. Mit a das gewünschte Auswahlfeld anwählen und mit bestätigen.
- 3. Mit a das gewünschte Ziffernfeld anwählen und mit bestätigen.
- 4. Mit aden Wert einstellen und mit du übernehmen.
- 5. Mit Speichern die Einstellung abspeichern.
- 6. Mit **zurück** → Hauptmenü.

HINWEISE

Mit **Byte Format** lässt sich das Datenformat (Word Order) festlegen. Zur Auswahl stehende Formate = ABCD" (Big Endian) und CDAB" (Middle Endian).

Rücksetzen auf Werkseinstellung mit **setze Standardwerte**. Bei unterschiedlichen Parametern zwischen Master und Slave findet **keine Kommunikation** zwischen den Geräten statt.

7. Erst jetzt den Umgebungsbedingungssensor mit dem Modbus verbinden.

15.2 Schalt-/Alarmausgang

Nach Menüaufruf ist das 1. Feld aktiviert (blau hinterlegt).

- 1. Mit das **Feld Alarm** selektieren und mit den **Alarmausgang** aktivieren / deaktivieren.
- Weitere Einstellungen für Alarm vornehmen:
 Auswahlfelder: Einheit, Wert, Hysterese, unterschreiten/überschreiten
- 3. Mit **OK** → zum Hauptmenü.

Auswahlfelder

- Einheiten: °C, °F, hPa, mbar, bar, psi, % r.F, °Ftd, °Ctd.
- Wert definiert den Alarmwert
- Hysterese definiert die gewünschte Hysterese
- überschreiten/unterschreiten legt fest, wann der Alarm anspricht:
 überschreiten = Wert überschreitend / unterschreiten = Wert unterschreitend

Einstellung

- 1. Mit a das gewünschte Auswahlfeld anwählen und mit bestätigen.
- 2. Mit **Taste** zum nächsten Datenfeld oder zur nächsten Position wechseln oder den Einstellwert ändern und jeweils mit bestätigen.
- 3. Mit Speichern die Einstellung übernehmen.

15.3 Benutzer

1. Im Menü Einstellungen(erweitert) mit das Menü **Benutzer** anwählen und mit bestätigen.

Auswahlfelder: Passwort, Sprache, Display Ausrichtung, Display Helligkeit

2. Mit a das gewünschte Auswahlfeld anwählen und mit bestätigen.

15.3.1 Passwort Einstellungsmenü, 4-stellig

HINWEIS

Passwort ab Werk = 0000. Falls das Passwort einmal vergessen wurde, erhalten Sie Zugriff mit einem Master-Passwort.

- 1. Mit aas Auswahlfeld **Passwort** anwählen und mit bestätigen.
- 2. Neues Passwort eingeben. Dazu die eine **Zifferntaste** drücken und mit bestätigen. Die weiteren 3 Ziffern gleichermaßen einstellen.

Mit Taste wird jeweils letzte Ziffer gelöscht.

- 3. Die **Passworteingabe ein zweites Mal** vornehmen und mit bestätigen. Das neue Passwort ist nun gültig.
- 4. Mit **zurück** → Hauptmenü.

15.3.2 Sprache

Hier können Sie eine der 4 hinterlegten Sprachen auswählen: Deutsch, English, Spanish, French & Türkisch — Standardeinstellung = Deutsch.

- 1. Mit die gewünschte **Sprache** auswählen und mit bestätigen.
- 2. Mit **zurück** → Hauptmenü.

15.3.3 Display-Helligkeit / -Display Ausrichtung

Die Helligkeit am Display lässt sich in %-Schritten mit ☐ und ☐ anpassen → Balkendiagramm. Mit Abdunkeln wird nach Ablauf der hier eingestellten Zeit der Bildschirm gedimmt, um den Energieverbrauch zu senken.

- 1. Mit und die Bildschirmhelligkeit anpassen.
- 2. Mit die gewünschte **Zeit** (in Min.) auswählen und mit bestätigen.
- 3. Bei 180° gedrehter Montage der Steuerung mit **LCD drehen** die Displayanzeige um 180° drehen.
- 4. Falls die Bedienung des Sensors ausschließlich über das Bussystem erfolgen soll, lassen sich hier beiden Bedientasten und sperren.

Das Entsperren der beiden Bedientasten und erfolgt nach einem Neustart des Umgebungsbedingungssensor und anschließendem Aufruf des Menüs Einstellungen mit innerhalb von 10 Sekunden.

5. Mit **zurück** → Hauptmenü.

15.4 Einstellung Analogausgang 4...20 mA

1. Im Menü Einstellungen mit das Feld 4 - 20 mA anwählen und mit bestätigen.

Auswahlfelder: Kanal 1 und Fehler Strom

- 2. Mit a das gewünschte Auswahlfeld anwählen und mit bestätigen.
- 3. Mit **zurück** → zum Hauptmenü.

15.4.1 Kanal 1

Parameter-Auswahlfelder: Status, Einheit, Skalierung 4 mA und Skalierung 20 mA

- 1. Mit den gewünschten Parameter auswählen und mit bestätigen.
- 2. Weitere Einstellungen vornehmen.
- 3. Mit **zurück** → zum Hauptmenü.

15.4.2 Status

- 1. Mit as Feld **Status** anwählen und mit den Analogausgang aktivieren / deaktivieren
 ein aktiviert den Analogausgang, aus deaktiviert den Analogausgangeausgang.
- 2. Mit die gewünschte Einheit auswählen und mit bestätigen.
- 3. Mit **OK** die Einstellung übernehmen. Mit **Abbruch** die Änderung verwerfen.
- 4. Mit **zurück** → Einstellungen-Menü 4 20 mA.

15.4.3 Einheit

- 1. Mit as Feld Einheit anwählen und mit bestätigen.
- 2. Mit die gewünschte Einheit auswählen und mit bestätigen.
- 3. Mit **Speichern** die Einstellung übernehmen. Mit **Abbruch** die Änderung verwerfen.
- 4. Mit **zurück** → Einstellungen-Menü 4 20 mA.

15.4.4 Skalierung 4 mA und 20 mA

- 1. Mit a das gewünschte Skalierungsfeld (4 oder 20 mA) anwählen und mit bestätigen.
- 2. In den Ziffernfeldern den gewünschten Wert eingeben. Anwahl oder Einstellen mit , bestätigen mit , CLR löscht den Zählerstand.
- 3. Mit **zurück/Speichern** die Einstellung übernehmen. Mit **Abbruch** die Änderung verwerfen.
- 4. Mit **zurück** → 4 20 mA Einstellungen-Menü.

15.4.5 Fehler Strom

Hier lassen sich verschiedene Fehlerströme für Störungen am Analogausgang festlegen. Diese Störungssignale können über das Bussystem an eine Leitstelle übermittelt und dort ausgewertet werden.

•	Kein Fehlerstrom = None	Ausgabe nach Namur NE43: 3,8 mA - 20,5 mA
•	Fehlerstrom 2 mA	Sensorfehler/Systemfehler
•	Fehlerstrom 22 mA	Sensorfehler/Systemfehler
•	Fehlerstrom 3,8 mA - < 4 mA	Messbereichsunterschreitung
•	Fehlerstrom >20 mA - 20,5 mA	Messbereichsüberschreitung

- 1. Mit das Feld **Fehlerstrom** anwählen und mit bestätigen.
- 2. Mit and den gewünschten **Mode** anwählen und mit bestätigen.
- 3. Mit **Speichern** die Einstellung übernehmen. Mit **Abbruch** die Änderung verwerfen.
- 4. Mit **zurück** → 4 20 mA Einstellungen-Menü.

16 Ethernet-Einstellungen

1. Im Menü Einstellungen mit das Menü **Netzwerk.** anwählen und mit bestätigen.

Auswahlfelder: IP Adress, Modbus-TCP

- 2. Mit as gewünschte Auswahlfeld anwählen und mit bestätigen.
- 3. Mit **zurück** → zum Hauptmenü.

16.1 IP Adresse

Netzwerk-Adresse zu einem Computer, mit oder ohne DHCP.

HINWEIS

Mit aktiviertem DHCP-Protokoll ist die automatische Einbindung des Sensors in ein vorhandenes Netzwerk möglich, ohne diesen manuell zu konfigurieren.

Statische IP, Sub Netz und Gateway einstellen

- 1. Mit das gewünschte Auswahlfeld anwählen (Datenfeld wird gelb markiert) und mit bestätigen.
- 2. Mit and den Eingabewert ändern und mit bestätigen.
- 3. Mit **Taste** > zum nächsten Datenfeld oder zur nächsten Position wechseln oder den Einstellwert ändern und jeweils mit bestätigen.
- 4. Mit Speichern die Einstellung übernehmen.

16.2 Modbus-TCP-Setup

Der Umgebungsbedingungssensor ist mit einer Modbus TCP Schnittstelle ausgestattet:

- HW Interface M12 X-kodiert
- TCP-Port = 502, Einstellung am Sensor
- Modbus-Geräteadresse (Unit Identifier) 1 ... 255
- Unterstützte Modbus-Befehle/Funktionen:

Funktionscode 3: Holdingregister lesen

Funktionscode 16: Mehrere Register schreiben

ID, Port und Byte Format einstellen

- 1. Mit das gewünschte Auswahlfeld anwählen und mit bestätigen.
- 2. Mit **Taste** > zum nächsten Datenfeld oder zur nächsten Position wechseln oder den Einstellwert ändern und jeweils mit bestätigen.
- 3. Mit Speichern die Einstellung übernehmen.

HINWEISE

Mit Byte Format lässt sich das Datenformat (Word Order) festlegen. Zur Auswahl stehende Formate: ABCD" (Little Endian) und CDAB" (Middle Endian). Rücksetzen auf Werkseinstellung mit **setze Standardwerte**.

17 Info

Info-Menü mit der Taste Gffnen.

Mit **zurück** → Hauptmenü.

18 Status- und Fehlermeldungen

18.1 Fehlermeldungen

Low Voltage

Erscheint, falls eine Versorgungsspannung < 11 V anliegt. Der Umgebungsbedingungssensor kann nicht mehr ordnungsgemäß messen. Es stehen keine Messwerte zur Verfügung.

Fehlerbeseitigung: Versorgungsspannung prüfen. Versorgungsspannung ≥ 11 V sicherstellen.

Internal Error

Erscheint, falls ein interner Lesefehler registriert wird (EEProm, AD-Wandler etc.). Fehlerbeseitigung: Umgebungsbedingungssensor ausbauen und an uns senden.

Temp out of range

Erscheint, falls die Temperatur des Mediums außerhalb des spezifizierten Temperaturbereiches liegt. Dies führt zu fehlerhaften Messwerten außerhalb der Sensorspezifikation.

Fehlerbeseitigung: Umgebungstemperatur prüfen. Ist diese in Ordnung, die Sensoreinheit ausbauen und an uns senden.

Low Voltage 4...20 mA

Erscheint, falls die Minimal-Versorgungsspannung von 17,5 V unterschritten wird. Fehlerbeseitigung: Versorgungsspannung prüfen. Versorgungsspannung ≥ 18 V sicherstellen.

19 Wartung

HINWEIS

Ausbau des Umgebungsbedingungssensor nur durch unterwiesenes Fachpersonal. Sicherheitshinweise beachten.

19.1 Austausch der Sensoreinheit

HINWEIS

Empfehlung: Halten Sie eine Ersatz-Sensoreinheit für Kalibrierungs- oder Instandhaltungsarbeiten bereit Diese lässt sich einfach aus dem Sensorgehäuse herausschrauben. Nach dem Austausch gegen eine neue, kalibrierte Sensoreinheit ggf. die Offsetwerte zurücksetzen → Kapitel 14.

19.2 Wartung

Der Umgebungsbedingungssensor ist wartungsarm. Kontrollieren Sie den Sensor **jährlich** auf Beschädigung und Verschmutzung.

HINWEIS

Messfehler bei Schmutzpartikeln in der Raumluft. Ein verschmutztes Sensorelement kann zu einer Fehlfunktion oder Störung führen. Die Instandsetzung des Umgebungsbedingungssensor ist nur durch den Hersteller zulässig.

19.3 Kalibrierung

Eine (Re)-Kalibrierung ist abhängig von betrieblichen Vorgaben und etwaiger bestimmungsgemäßer DIN ISO Zertifizierungen vorzunehmen.

Empfohlen wird üblicherweise eine regelmäßige Kalibrierung nach 2 Jahren bzw. in zeitlichen Abständen, festgelegt durch den Betreiber.

19.4 Ersatzteile und Reparatur

HINWEIS

Für den Einsatz in betriebswichtigen Anlagen einen baugleichen Ersatzsensor bereithalten.

Zulässiger Einbau oder Austausch durch unterwiesenes Fachpersonal:

Abdeckung und Display der Bedieneinheit.

Alle anderen Reparaturen sind nur durch den Hersteller zulässig, um die Messgenauigkeit und Betriebssicherheit zu gewährleisten.

20 Demontage

Sicherheitshinweise beachten.

Die Demontage ist nur durch unterwiesene Fachkräfte zulässig.

21 ANHANG

21.1 Modbus RTU-Settings (2001...2005)

Modbus Register	Register Adresse	No.of Byte	Data Type	Description	Default Setting	Read Write	Unit /Comment
2001	2000	2	UInt16	Modbus ID	1	R/W	Modbus ID 1247
2002	2001	2	UInt16	Baud rate	4	R/W	0 = 1200 1 = 2400 2 = 4800 3 = 9600 4 = 19200 5 = 38400 6 = 115200
2003	2002	2	UInt16	Parity	1	R/W	0 = none 1 = even 2 = odd
2004	2003	2	UInt16	Number of Stopbits		R/W	0 = 1 Stop Bit 1 = 2 Stop Bit
2005	2004	2	UInt16	Word Order	0xABCD	R/W	0xABCD = Big Endian 0xCDAB = Middle Endian

21.2 Values Register IPTF 500

Modbus Register	Register Address	No. of Byte	Data Type	Description	Read / Write	Comment
1001	1000	4	Float	Temperature		R
1003	1002	4	Float	Temperature		R
1005	1004	4	Float	Relative Humidity		R
1007	1006	4	Float	Pressure		R
1009	1008	4	Float	Pressure		R
1011	1010	4	Float	Pressure		R
1013	1012	4	Float	DewPoint		R
1015	1014	4	Float	DewPoint		R
1017	1016	4	Float	Absolute Humidity		R
1019	1018	4	Float	Absolute Humidity		R
1021	1020	4	Float	Humidity Grade		R
1023	1022	4	Float	Vapor Ratio (Volume)		R
1025	1024	4	Float	Saturation Vapor		R
1027	1026	4	Float	Partial Vapor Pressure		R

21.1 Values Register Actual, Min & Max IPTF 500

Modbus Register	Register Address	No. of Byte	Data Type	Description	Read / Write	Comment
1201	1200	4	Float	Temperature		R
1203	1202	4	Float	Temperature Min		R
1205	1204	4	Float	Temperature Max		R
1207	1206	4	Float	Temperature		R
1209	1208	4	Float	Temperature Min		R
1211	1210	4	Float	Temperature Max		R
1213	1212	4	Float	Relative Humidity		R
1215	1214	4	Float	Relative Humidity Min		R
1217	1216	4	Float	Relative Humidity Max		R
1219	1218	4	Float	Pressure		R
1221	1220	4	Float	Pressure Min		R
1223	1222	4	Float	Pressure Max		R
1225	1224	4	Float	Pressure		R
1227	1226	4	Float	Pressure Min		R
1229	1228	4	Float	Pressure Max		R
1231	1230	4	Float	Pressure		R
1233	1232	4	Float	Pressure Min		R
1235	1234	4	Float	Pressure Max		R
1237	1236	4	Float	DewPoint		R
1239	1238	4	Float	DewPoint Min		R
1241	1240	4	Float	DewPoint Max		R
1243	1242	4	Float	DewPoint		R
1245	1244	4	Float	DewPoint Min		R
1247	1246	4	Float	DewPoint Max		R
1249	1248	4	Float	Absolute Humidity		R
1251	1250	4	Float	Absolute Humidity Min		R
1253	1252	4	Float	Absolute Humidity Max		R
1255	1254	4	Float	Absolute Humidity		R
1257	1256	4	Float	Absolute Humidity Min		R
1259	1258	4	Float	Absolute Humidity Max		R
1261	1260	4	Float	Humidity Grade		R
1263	1262	4	Float	Humidity Grade Min		R
1265	1264	4	Float	Humidity Grade Max		R
1267	1266	4	Float	Vapor Ratio (Volume)		R
1269	1268	4	Float	Vapor Ratio (Volume) Min		R
1271	1270	4	Float	Vapor Ratio (Volume)		R

21.2 Index Einheiten

Index	Unit	Index	Unit	Index	Unit	Index	Unit	Index	Unit
1	°C	21	Nltr/min	41	V	61	kVAr	65	W
2	°F	22	NItr/s	42	μV	62	-	81	g/s
3	%RH	23	SCFM	43	kV	63	€	82	g/min
4	°Ctd	24	m³	44	mA	64	cts/m³	83	m
5	°Ftd	25	ltr	45	А	65	W	84	ft
6	mg/kg	26	cf	46	kg/s	66	Wh	85	min.
7	mg/m³	27	Nm³	47	kg	67	h	86	ms
8	g/kg	28	Nltr	48	AVm³/h	68	dB		
9	g/m³	29	SCF	49	AVI/h	69	mm		
10	m/s	30	ppm	50	AVkg/h	70	inch		
11	fpm	31	°CtdR	51	AVcf/h	71	ltr/h		
12	Nm/s	32	°FtdR	52	kg/h	72	Nltr/h		
13	SFPM	33	Pa	53	kg/min	73	lb/h		
14	m³/h	34	hPa	54	Ohm	74	lb/min		
15	m³/min	35	kPa	55	Hz	75	lb/s		
16	ltr/min	36	MPa	56	%	76	t/h		
17	ltr/min	37	mbar	57	kW	77	t		
18	Itr/s	38	bar	58	kWh	78	lb		
19	cfm	39	psi	59	PCS	79	SCFH		
20	Nm³/h	40	mV	60	kVA	80	cfh		

ICS Schneider Messtechnik GmbH Briesestraße 59 D-16562 Hohen Neuendorf / OT Bergfelde Tel.: 03303 / 50 40 66 Fax.: 03303 / 50 40 68